Journal of Organometallic Chemistry, 381 (1990) 293-297 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20429

Synthesis and structure of the unusual dimeric lithium derivative of the tetraphenyldisiloxanediolate dianion

Michael B. Hursthouse *, M. Altaf Hossain, Majid Motevalli, Mahesh Sanganee and Alice C. Sullivan *

Department of Chemistry, Queen Mary College, Mile End Road, London El 4NS (U.K.) (Received August 8th, 1989)

Abstract

The synthesis and structure of the new compound bis[dipyridinodilithium tetraphenyldisiloxanediolate], $[Ph_4Si_2O(OLiPy)_2]_2$ (1), are described, and a number of unusual features discussed.

Introduction

We recently reported on the reaction between dilithium tetraphenyldisiloxanediolate $Ph_4Si_2O(OLi)_2$ (A) and $TiCl_4$, in which an expanded siloxane chain was incorporated into the product to give the titanatrisiloxane *cis*-Py₂Ti(OSiPh₂-(OSiPh₂)₂O)₂ [1]. We have now isolated the pyridine complex of A, confirming our previous conclusion that this reagent is formed with the disiloxane intact from the disiloxanediol and methyllithium. The pyridine adduct of A has now been shown by an X-ray diffraction study to have the unusual dimeric molecular structure shown in Fig. 1.

Experimental

A solution of tetraphenyldisiloxanediol $Ph_4Si_2(OH)_2$ (4.0 g, 9.65 mmol) in tetrahydrofuran (30 cm³) was treated dropwise with a solution of methyllithium (8.4 cm³ of 2.3 mol dm⁻³ solution in diethyl ether, 19.3 mmol). The mixture was stirred for 3 h and the ethers were then evaporated off, the residue was extracted with toluene, and the filtered extract was concentrated to ca. 25 cm³. Pyridine was added to the point of turbidity, and colourless crystals of the product 1 separated. 1.8 g (32%); m.p. 376 °C. Found: C, 69.67; H, 5.09; N, 3.65. $C_{34}H_{30}O_3Si_2N_2Li_2$ calcd.: C, 69.84; H, 5.18; N, 4.79%. ⁷Li NMR (C₆D₆), -2.19(s), ⁷Li NMR (solid), 1.99(s). *Crystal data for 1.* $C_{34}H_{30}Li_2O_3N_2Si_2$, M = 584.677, triclinic, a 11.183(4), b

13.458(4), c 13.377(5) Å, α 115.87(3), β 13.458(4), γ 101.53(3)°, U 1640.35 Å³, space

Fig. 1. X-ray crystal structure of $[PyLiOSiPh_2OSiPh_2OLiPy]_2$ (1) (phenyl and pyridine carbon atoms omitted for clarity). Selected bond lengths (Å) and angles (°): Li(1)–O(2) 1.800(8), Li(1)–O(3a) 1.874(7), Li(1)–N(1) 2.049(8), Li(1)–Li(2) 2.472(11), Li(2)–O(2) 1.943(7), Li(2)–O(3) 2.011(7), Li(2)–O(3a) 1.992(8), Li(2)–N(2) 1.992(8), Si(1)–O(1) 1.644(3), Si(1)–O(2) 1.573(3), Li(2)–Li(2a) 2.506(6), O(2)–Li(1)–O(3a) 102.93(3), O(2)–Li(2)–O(3) 111.53(4), O(2)–Si(1)–O(1) 111.88(2), Li(1)–O(2)–Li(2) 82.59(3), Li(2)–O(3)–Li(1a) 116.82(2), Si(1)–O(1)–Si(2) 138.86(2).

Fig. 2. Structural formula of the essential core in 1.

group P1, Z = 2, D_c 1.184 g cm⁻³, (Mo- K_{α}) 0.71069 Å, μ 1.370 cm⁻¹. Data recorded with CAD4 diffractometer in $\omega - 2\theta$ scan mode; 5758 unique reflections measured, 4098 observed with $[F > 3\sigma F_o]$. The structure was solved by direct methods, refined by least squares [phenyl groups treated as rigid hexagons (C-C 1.395 Å) with inclusion of hydrogen atoms at fixed distance (C-H 0.96 Å)] to

Fractional atomic coordinates ($\times 10^4$) for $C_{34}H_{30}Li_2N_2O_3Si_2$.

Table 1

Atoms	x	у	Ζ	
Si(1)	753(2)	3153(1)	6400(1)	
Si(2)	217(1)	1351(1)	3782(1)	
Li(1)	- 368(9)	1113(8)	7037(8)	
Li(2)	1000(8)	865(7)	5790(7)	
N(1)	9182(5)	1782(4)	8557(4)	
N(2)	7087(5)	- 921(5)	3827(4)	
O(1)	731(3)	2621(3)	5018(3)	
O(2)	508(4)	2171(3)	6746(3)	
O(3)	213(3)	291(3)	4025(3)	
C(2)	- 1641(4)	3495(3)	6664(4)	
C(3)	- 2599(4)	4015(3)	6621(4)	
C(4)	-2431(4)	4934(3)	6380(4)	
C(5)	-1306(4)	5333(3)	6183(4)	
C(6)	- 348(4)	4813(3)	6227(4)	
C(1)	- 516(4)	3894(3)	6468(4)	
C(8)	2850(5)	4829(4)	8597(4)	
C(9)	4111(5)	5648(4)	9318(4)	
C(10)	4953(5)	5953(4)	8793(4)	
C(11)	4535(5)	5439(4)	7546(4)	
C(12)	3274(5)	4619(4)	6824(4)	
C(7)	2432(5)	4314(4)	7350(4)	
C(13)	8393(6)	1238(6)	8901(6)	
C(14)	8139(7)	1777(7)	9919(6)	
C(15)	8726(11)	2919(8)	10637(7)	
C(16)	9547(13)	3504(8)	10334(8)	
C(17)	9753(10)	2911(6)	9279(7)	
C(18)	6945(8)	120(7)	4304(7)	
C(19)	4186(11)	- 332(11)	5900(9)	
C(20)	4721(11)	-625(14)	3317(10)	
C(21)	4779(10)	- 1724(11)	2789(9)	
C(22)	6009(8)	- 1844(8)	3070(7)	
C(24)	914(3)	1392(3)	1847(3)	
C(25)	1790(3)	1555(3)	1292(3)	
C(26)	3131(3)	1885(3)	1890(3)	
C(27)	3596(3)	2051(3)	3043(3)	
C(28)	2720(3)	1887(3)	3598(3)	
C(23)	1379(3)	1558(3)	3000(3)	
C(30)	- 1904(3)	2078(2)	3093(3)	
C(31)	- 3182(3)	1902(2)	2448(3)	
C(32)	- 4030(3)	770(2)	1554(3)	
C(33)	- 3600(3)	-186(2)	1306(3)	
C(34)	- 2322(3)	- 10(2)	1951(3)	
C(29)	- 1474(3)	1122(2)	2845(3)	

Bond lengths		in an	
O(1)-Si(1)	1.644(5)	O(2) - Si(1)	1.573(5)
C(1) - Si(1)	1.888(6)	C(7) - Si(1)	1.885(7)
O(1)-Si(2)	1.632(5)	O(3)-Si(2)	1.593(5)
C(23)-Si(2)	1.893(6)	C(29)-Si(2)	1.884(6)
Li(1)-Li(2)	2.472(11)	Li(1) - O(2)	1.800(8)
Li(1)-N(1)	2.049(8)	Li(1)-O(3a)	1.874(7)
Li(2)-N(2)	2.057(8)	Li(2)-Li(2a)	2.506(8)
Li(2)-O(2)	1.943(7)	Li(2) - O(3a)	1.992(7)
Li(2)-O(3)	2.011(7)	C(17) - N(1)	1.300(9)
C(13)-N(1)	1.323(8)	C(22) - N(2)	1.322(9)
C(18)–N(2)	1.323(9)	C(15) - C(14)	1.315(11)
C(14)-C(13)	1.357(9)	C(17)-C(16)	1.379(12)
C(16)-C(15)	1.337(13)	C(22) - C(21)	1.399(13)
C(21)-C(20)	1.357(14)		
Bond angles			
O(2)-Si(1)-O(1)	111.9(3)	C(1)-Si(1)-O(1)	105.4(3)
C(1)-Si(1)-O(2)	113.7(3)	C(7)-Si(1)-O(1)	103.9(3)
C(7)-Si(1)-O(2)	112.3(3)	C(7)-Si(1)-C(1)	108.9(3)
O(3)-Si(2)-O(1)	112.8(3)	C(23)-Si(2)-O(1)	103.9(3)
C(23)-Si(2)-O(3)	112.4(3)	C(29)-Si(2)-O(1)	107.6(3)
C(29)-Si(2)-O(3)	111.2(3)	C(29) - Si(2) - C(23)	108.5(3)
O(2) - Li(1) - O(3a)	102.93(4)	Li(2) - Li(1) - N(1)	157.88(5)
N(1)-Li(1)-O(3a)	138.72(5)	N(1)-Li(1)-O(2)	116.31(5)
O(2)-Li(2)-O(3)	111.53(4)	N(2)-Li(2)-O(3)	107.80(6)
O(2)-Li(2)-O(3a)	93.88(6)	N(2)-Li(2)-O(3a)	116.59(7)
N(2)-Li(2)-O(2)	122.49(6)	C(22)-N(2)-C(18)	116.7(8)
C(17) - N(1) - C(13)	115.6(7)	C(1)-C(2)-C(3)	120.0
Si(2) - O(1) - Si(1)	138.2(2)		

Bond lengths (Å) and angles (°) for $C_{34}H_{30}Li_2N_2O_3Si_2$.

R = 0.06231, $R_w = 0.0574$ for 384 parameters. The complete structure is shown in Fig. 1, and that of the essential core in Fig. 2. Atomic coordinates are given in Table 1 and bond lengths and angles in Table 2. Lists of thermal parameters and final structure factors are available from the authors.

Discussion

Compound 1 is based on a 12-membered $\text{Li}_2\text{Si}_4\text{O}_6$ ring. This pentacyclic system is to some extent related to that in the mineral thortveitite $[\text{Sc}_2\text{Si}_2\text{O}_7]$ [2], which may be viewed as an extended series of interconnecting overlapping 12-membered $\text{Sc}_2\text{Si}_4\text{O}_6$ rings with Si_2O_2 bridges. The most striking features of 1 involve the three 4-membered lithiooxane rings. These have a folded ladder arrangement similar to that found in the polymeric compound $[\text{Ph}_2\text{CH}_2\text{SLiPy}]_{\infty}$ [3]. However, in the present case the Li \cdots Li distances appear to be within bonding range (e.g. Li(1)-Li(2) 2.479 Å and Li(2)-Li(2a) 2.465 Å), being much shorter than $\text{Li} \cdots \text{Li}$ distances in metallic lithium (3.04 Å) and in gaseous lithium (2.67Å) but close to those reported as within bonding range in the cluster ($\text{LiC}_6\text{H}_4\text{CH}_2 \cdot \text{NLi} \cdot \text{CH}_2\text{CH}_2\text{NMe}_2$)₄ [4]. It is noteworthy that only a single resonance was observed in

Table 2

Acknowledgement

We thank the SERC for funds and for the awards of Advanced Fellowship to ACS and a studentship to M.S., the CRF of the University of London for funds, and Dr. C. Groombridge (Royal Holloway College) for solid state spectra.

References

- 1 M.A. Hossain, M.B. Hursthouse, M. Mazid and A.C. Sullivan, J. Chem. Soc. Chem. Commun., (1988) 1305.
- 2 D.W. Cruickshank, H. Lynton and G.A. Barclay, Acta Cryst., 15 (1962) 491.
- 3 A.J. Bannister, W. Clegg and W. Gill, J. Chem. Soc., Chem. Commun., (1987) 850.
- 4 D. Barr, W. Clegg, S. Hodgson, R.E. Mulvey, D. Reed, R. Snaith and D.S. Wright, J. Chem. Soc., Chem. Commun., (1988) 367.